A computational study of the effect of the metal organic framework environment on the release of chemically stored nitric oxide.
نویسندگان
چکیده
The use of copper based metal organic frameworks as a vehicle for the storage and delivery of chemically stored nitric oxide has been proposed based on recent experiments [J. Am. Chem. Soc., 2012, 134, 3330-3333]. In these experiments copper based metal organic frameworks (MOFs) suspended in ethanol catalytically convert chemically stored nitric oxide (in the S-nitrosothiol or RSNO form) to free nitric oxide at a slow and sustained rate, as compared to a quick release in a solution of ethanol containing free copper ions. In order to gain insight on the effect of the MOF environment on the catalytic activity, a combination of electronic structure calculations on representative clusters and classical simulations using a force-field (partly parameterized on the above calculations) is used to study a simple RSNO species, S-nitrosomethane (CH3SNO) as well as the biologically compatible S-nitrosocysteine, both in the MOF and free copper solution. The free energy profiles of bringing the RSNO species to the catalytic centers have been compared and related to the different solvation environments of the copper catalyst in the complex solvated MOF and in free copper solution. Surprisingly, in the case of the simple CH3SNO moiety as well as the S-nitrosocysteine case, the free energy profile of bringing the first RSNO from the center of one of the pores to the catalytic site in the pore is very similar to the free solution case. On the other hand, bringing a second RSNO molecule to the same catalytic site or to the adjacent catalytic copper site show relatively higher barriers. These studies help shed light on the sustained nitric oxide release in the MOF environment.
منابع مشابه
In this paper, the effect of nanocatalytic metal-organic framework based on copper metal and bis-tetrazolamine (CuBTA) ligand functionalized with cobalt (II) oxide nanoparticles on the thermal decomposition behavior of ammonium perchlorate (AP), using differential survey calorimetry (DSC) has been reviewed. First, the metal-organic framework (CuBTA) was synthesized from the raw materials of cop...
متن کاملSynthesis of Different Copper Oxide Nano-Structures From Direct Thermal Decomposition of Porous Copper(ΙΙ) Metal-Organic Framework Precursors
Copper oxide nanostructures have been successfully synthesized via one-step solid-state thermolysis of two metal-organic frameworks, [Cu3(btc)2] (1) and [Cu(tpa).(dmf)] (2), (btc = benzene-1,3,5-tricarboxylate, tpa = therephtalic acid = 1,4-benzendicarboxylic acid and dmf = dimethyl formamide) under air atmosphere at 400, 500, and 600°C. It has also been found that the reaction temperature pla...
متن کاملApplication of a nanoporous metal organic framework based on iron carboxylate as drug delivery system
In the present study, a nanoporous metal organic framework (MOF) based on iron metal and amino terephthalate ligand MIL-101-NH2-Fe has been used as a carrier for loading and in vitro release of 5-flurouracil (5-FU) anticancer drug. The 5-FU drug loaded MOF was 13 wt % by using thermogravimetric analysis (TGA). The 5-FU release was monitored under physiological condition at 37°C, pH 7.4 in simul...
متن کاملApplication of a nanoporous metal organic framework based on iron carboxylate as drug delivery system
In the present study, a nanoporous metal organic framework (MOF) based on iron metal and amino terephthalate ligand MIL-101-NH2-Fe has been used as a carrier for loading and in vitro release of 5-flurouracil (5-FU) anticancer drug. The 5-FU drug loaded MOF was 13 wt % by using thermogravimetric analysis (TGA). The 5-FU release was monitored under physiological condition at 37°C, pH 7.4 in simul...
متن کاملSynthesis and Characterization of Nano-Structure Copper Oxide From Two Different Copper (II) Metal-Organic Framework Precursors
Nano-structured copper oxides were successfully prepared through direct calcination of 1D ladderlike metal-organic framework [Cu2(btec)(2,2'-bipy)2]∞, (btec = 1,2,4,5-benzenetetracarboxylate and 2,2'-bipy = 2,2'-bipyridine) and porous coordination polymer [Cu(BDC)(bipy)](BDCH2), (BDC = 1,4-benzenedicarboxylate; bipy = 4,4'-bipyridine). The nano-structure of the as-synthesized samples are charac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 36 شماره
صفحات -
تاریخ انتشار 2015